

NEAR REAL-TIME QUANTITATION OF VIABLE MICROORGANISMS FOR PLANETARY PROTECTION AND CREW HEALTH

Norman Wainwright, Ph.D.

Needs for Rapid Biological Testing

- Quality Control
- Environmental Health
- Product release
- Microbiology
- Crew Health
- Infectious diseases
- Mission Science
- Astrobiology
- Planetary Protection
- Spacecraft assembly / mission support

Background

Bacterial LPS / ATP as biomarker indicators of contamination

- Rapid Methods vs. Traditional Culture Minutes to results vs. Days to results
- LOCAD-PTS Lab on a Chip Application
 Development Portable Test System

Sample Acquisition on ISS

ISS014E18791

PTS™ Flight Unit

- Pro: Rapid –
- Minutes vs days
- No culture necessary
- Smart no user expertise needed
- Con:
- No direct link to viable cells
- No species information

PTS Micro Scanner

PTS Micro System

Small, rapid bioburden test system that directly measures viable microorganisms that have been isolated, stained and detected on a capillary or filter membrane.

PTS Micro Reagents

- Filtration cup and funnel –
- · Adheres to current standard membrane filter procedure
- · 100ml volume, likely add 200 ml cup in future
- Superior performance low background membranes
- Gamma irradiated single sample consumable package
- Optional enrichment step to further increase sensitivity
 - Capillary
 - Direct measurement no concentration
 - Bulk packaging 50 / box
 - Sensitivity dependent on scan volume
 - Smaller scan area means faster scan time

- Positive control beads
- Checks scanner precision, filter integrity
- Single use reagent dye
- Live / dead cell differentiator

Optics:

Light path of Excitation / Emission

PTS Micro Membrane Filter Procedure

Laminar Flow Hood

Step 1. Membrane Filtration

Step 2. Add Reagent Dye and incubate at room temp (optional enrichment step)

Step 3 Detach cup and cover membrane

Step 5. Scan

If positive, then culture

Step 4. Place in Holder and Insert into PTS Micro

Samples in Scanning Mode

Capillary holder

PTS Micro – Basic Principle

- Membrane holder spins inside instrument
- Membrane carriage moves past the laser
- Laser excites fluorescent events on the membrane
- Signals emanating from cells are recorded in one of three channels depending on wavelength (color)
- organisms stained with live cell dye captures in one channel
- positive control beads captured in separate channel
- Software algorithms discriminate based on size, shape and intensity to exclude background, dead cells, etc

Solid Phase Cytometry

PTS Micro Assay Methods

DNA Stain / Quencher

- Results in as little as 15 min
- Sensitivity measured as viable microorganisms (*VM* / volume)
- Viable but not cultivable
- False positives possible

Reductase substrate (CTC)

- Enrichment 4- 12 hours
- Excellent correlation to cfu
- first commercial application

Esterase substrate

- Results in as little as 30 minutes
- Sensitivity measured as viable microorganisms (*VM* / volume)
- Enrichment not needed
- Couple with spore germination 2 hour

Species Specificity (Future)

- culture
- fluorescent label Ab
- Raman spectroscopy (requires second laser module)

Live vs. Dead Cell Differentiation

Dead Cell

Live Cell Staining Mechanism

PTS Micro uses a fluorescent live cell stain and a dead cell quencher combination to accurately detect viable microorganisms

S. aureus cells - raw data

S. aureus - software detection

Amplitude			Position	
$\lambda = 200 \text{ nm}$	400 nm	600 nm	r (µm)	θ (radians)
7830.0	7867.4	7396.2	15210.9	5.1
9216.6	7349.1	9655.0	16757.0	0.4
8839.9	7431.7	8996.7	15598.0	5.5
9201.7	7679.5	9448.6	13723.9	0.3
6522.7	8661.5	10470.6	13719.1	3.3
7569.1	8114.8	7569.4	18119.9	5.5
8507.2	7852.9	8990.1	22616.8	4.3
8173.7	8768.9	8512.3	19772.0	2.6
8369.1	7700.4	5459.9	21685.6	2.1
7967.2	9167.9	7470.4	21397.8	0.2
7915.5	8013.8	7126.7	17034.7	5.2
7739.7	7616.3	8835.9	17075.8	2.4
9589.9	4932.7	7802.4	16925.0	5.8
9662.3	7821.2	9252.9	15840.1	1.4
7589.3	8275.0	8819.4	14236.2	1.8
8304.0	7530.3	6442.6	16005.0	2.4
8640.9	7407.2	6903.2	22526.7	5.7
7430.6	7683.5	7601.5	20098.3	1.5
8152.8	7862.6	6768.5	14238.8	0.1

Plot spectral profile

checklist

- What planetary protection (PP) related research activities or technical developments do you feel are critical for inclusion in your study area? Sampling
- What work/research is already underway? Hardware / Software
- Is special information or technology needed to plan for nominal vs. non-nominal situations? Engineering Integ.
- Are existing human mission mitigation options and approaches adaptable for PP needs on the martian surface? Yes
- Are there any significant stumbling blocks ahead that are evident? (Including coordination across PP, science exploration, engineering, operation and medical communities.)
- In your opinion, what still needs to be accomplished? Consensus

Path Forward

- Core technology for rapid viable cell detection maturing
 - Species specificity by fluorescent labeled Ab
 - Species specificity by Raman
- Spacecraft Assembly applications
- Adaptation of Hardware for flight
- Sample Acquisition tools needed
- Potential multi-assay platform